

DIFFERENCE MATRICES AND ORTHOGONAL ORTHOMORPHISMS OF GROUPS

TAO FENG^{1*}

¹ School of Mathematics and Statistics, Beijing Jiaotong University, Beijing 100044, P. R. China. tfeng@bjtu.edu.cn

ABSTRACT. Let G be a finite group of order v and let $k \geq 2$ be an integer. A (v, k, λ) -difference matrix (DM) over G, briefly (G, k, λ) -DM, is a $k \times \lambda v$ matrix $D = (d_{ij})$ with entries from G, such that for any two distinct rows x and y, the multiset of differences $\{d_{xj}^{-1}d_{yj}: 1 \leq j \leq \lambda v\}$ contains each element of G exactly λ times.

Difference matrices have a very close relationship with orthogonal orthomorphisms of groups. A bijection $\theta: G \to G$ of a finite group G is an orthomorphism of G if the mapping $x \mapsto x^{-1}\theta(x)$ is also a bijection, and two orthomorphisms θ and ϕ of G are said to be orthogonal if the mapping $x \mapsto \theta(x)^{-1}\phi(x)$ is a bijection. There exists a set of k pairwise orthogonal orthomorphisms of G if and only if there exists a (G, k + 2, 1)-DM.

By giving previously unknown a pair of orthogonal orthomorphisms of cyclic groups of order 18t + 9 for any positive integer t, we complete the existence spectrum of a pair of orthogonal orthomorphisms of cyclic groups. As a corollary, we complete the existence spectrum of a difference matrix with four rows over any finite abelian group.

Let *H* be a finite abelian group and let $D_{2H} = \langle H, b \mid b^2 = 1, bhb = h^{-1}, h \in H \rangle$ be the generalized dihedral group of *H*. It is proved that a $(D_{2H}, 4, 1)$ -DM exists if and only if *H* is of even order and *H* is not isomorphic to \mathbb{Z}_4 . It is proved that if *G* is a finite abelian group and the Sylow 2-subgroup of *G* is trivial or noncyclic, then a (G, 5, 1)-DM exists, except for $G \in \{\mathbb{Z}_3, \mathbb{Z}_2 \oplus \mathbb{Z}_2, \mathbb{Z}_4 \oplus \mathbb{Z}_2, \mathbb{Z}_9\}$ and possibly for some groups whose Sylow 2-subgroup lies in $\{\mathbb{Z}_2 \oplus \mathbb{Z}_2, \mathbb{Z}_4 \oplus \mathbb{Z}_2, \mathbb{Z}_{32} \oplus \mathbb{Z}_2, \mathbb{Z}_{16} \oplus \mathbb{Z}_4\}$, and some cyclic groups of order 9p with p prime.

¹⁹⁹¹ Mathematics Subject Classification. Primary: 05B15, 05B20.

 $Key\ words\ and\ phrases.$ Difference matrix, orthogonal orthomorphisms of groups.

^{*} Speaker.