DIFFERENCE MATRICES AND ORTHOGONAL ORTHOMORPHISMS OF GROUPS

TAO FENG ${ }^{1 *}$
${ }^{1}$ School of Mathematics and Statistics, Beijing Jiaotong University, Beijing 100044, P. R. China. tfeng@bjtu.edu.cn

Abstract. Let G be a finite group of order v and let $k \geq 2$ be an integer. A (v, k, λ)-difference matrix (DM) over G, briefly $(G, k, \lambda)-\mathrm{DM}$, is a $k \times \lambda v$ matrix $D=\left(d_{i j}\right)$ with entries from G, such that for any two distinct rows x and y, the multiset of differences $\left\{d_{x j}^{-1} d_{y j}: 1 \leq j \leq \lambda v\right\}$ contains each element of G exactly λ times.

Difference matrices have a very close relationship with orthogonal orthomorphisms of groups. A bijection $\theta: G \rightarrow G$ of a finite group G is an orthomorphism of G if the mapping $x \mapsto x^{-1} \theta(x)$ is also a bijection, and two orthomorphisms θ and ϕ of G are said to be orthogonal if the mapping $x \mapsto \theta(x)^{-1} \phi(x)$ is a bijection. There exists a set of k pairwise orthogonal orthomorphisms of G if and only if there exists a $(G, k+2,1)$-DM.

By giving previously unknown a pair of orthogonal orthomorphisms of cyclic groups of order $18 t+9$ for any positive integer t, we complete the existence spectrum of a pair of orthogonal orthomorphisms of cyclic groups. As a corollary, we complete the existence spectrum of a difference matrix with four rows over any finite abelian group.

Let H be a finite abelian group and let $D_{2 H}=\langle H, b| b^{2}=$ $\left.1, b h b=h^{-1}, h \in H\right\rangle$ be the generalized dihedral group of H. It is proved that a $\left(D_{2 H}, 4,1\right)$-DM exists if and only if H is of even order and H is not isomorphic to \mathbb{Z}_{4}. It is proved that if G is a finite abelian group and the Sylow 2-subgroup of G is trivial or noncyclic, then a $(G, 5,1)$-DM exists, except for $G \in\left\{\mathbb{Z}_{3}, \mathbb{Z}_{2} \oplus \mathbb{Z}_{2}\right.$, $\left.\mathbb{Z}_{4} \oplus \mathbb{Z}_{2}, \mathbb{Z}_{9}\right\}$ and possibly for some groups whose Sylow 2-subgroup lies in $\left\{\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}, \mathbb{Z}_{4} \oplus \mathbb{Z}_{2}, \mathbb{Z}_{32} \oplus \mathbb{Z}_{2}, \mathbb{Z}_{16} \oplus \mathbb{Z}_{4}\right\}$, and some cyclic groups of order $9 p$ with p prime.

[^0]
[^0]: 1991 Mathematics Subject Classification. Primary: 05B15, 05B20.
 Key words and phrases. Difference matrix, orthogonal orthomorphisms of groups.

 * Speaker.

